From NPR’s Alan Yu:
Robotics researchers at Cornell University made a hand that has something close to a human touch — it can not only touch delicate items but also sense the shape and texture of what it comes into contact with. Such a soft robot hand is a step forward for the growing field of soft robotics — the kind of technology that’s already used in warehouses to handle food or other products. But it also holds promise for better prosthetics, robots to interact directly with people or with fragile objects, or robots to squeeze into tight spaces.
Think of a traditional robot and imagine its gripper. It would likely be made of rigid parts, powered by joints and motors. That’s because in the past, for a robotic hand to sense what it’s holding or touching, it had to be made of something that can conduct electricity, like metal.
Now, it just has to be something that can conduct light, says Huichan Zhao, a doctoral candidate in mechanical engineering at Cornell who is the lead author of the research article about the new soft robot hand, published this month in the journal Science Robotics.
“Our human hand is not functioning using motors to drive each of the joints; our human hand is soft with a lot of sensors … on the surface and inside the hand,” she says. “Soft robotics provides a chance to make a soft hand that is more close to a human hand.”
Imagine a hand-shaped balloon, with light signals running through bendable so-called waveguides, pipes that carry waves, inside the fingers. When the hand touches something, the waveguides bend, distorting or changing the light signals. That change gives the robot data on whatever it is the hand is touching.
“There’s a tremendous unmet need here,” says Joshua Lessing, director of research and development at the company Soft Robotics that is already making products using soft robotics.