Though recent advances in design, fabrication, and programming technologies promise to enable rapid digital manufacturing of functional robotic systems, many challenges need to be addressed to realize the dream of fully functional print-on-demand robots. The creation of robotic systems requires expertise in diverse areas, including mechanics, electronics, software, and control theory. Contributions from all of these fields will be required to automate or greatly simplify direct robot fabrication.
Design
Designing a robotic system requires translating the definition of the desired electromechanical device between various types of specifications, often starting from a functional specification describing the system’s intended behavior. The ultimate goal of design in this context is to end up with a set of fabrication specifications that can get sent through a manufacturing process to make a robot. This flow can be split with an intermediate structural specification that realizes the functionality in terms of mechanisms and assemblies. Research into design systems for robots aims to assist users in the creation of fabricable drawings directly from the structural or functional specifications.
Design for manufacturability (DFM) considerations impose constraints on functional and structural specifications based on the limits of fabrication technology. By expanding the manufacturing capabilities, these constraints can be relaxed or, ideally, eliminated. For example, three-dimensional (3-D) printing technology allows for nearly any rigid body to be fabricated, thus allowing for the direct realization of arbitrary functionally specified solid structures. Read More…